
FUNCTIONS ON THE CIRCLE

(FOURIER ANALYSIS)

In this chapter we shall study periodic functions of a real variable. The

importance of such functions derives from the fact that many natural and

physical phenomena are oscillatory, or recurrent. In the early 19th century,

J. B. J. Fourier laid down the foundations of the study of periodic functions

in his treatise Analytic Theory of Heat. There remained a few gaps and

difficulties in Fourier's theory and much mathematical energy during the

19th century was expended in the study of these problems. The invention of

Lebesgue's theory of integration in the early 20th century finally laid the

foundations to this theory. Our exposition will not follow this chrono

logical pattern; but rather will try to develop the way of thinking about

Fourier series which emerged during the late 19th century.

A periodic function is one whose behavior is recurrent. That is, there

is a certain number L, called the period of the function, such that the function

repeats itself over every interval of length L,

f(x + L)= f(x) for all x 6 R

From our point of view (which is very much a posteriori) the study of periodic
functions begins by discarding the notion of periodicity in favor of a change

in the geometry of the domain. That is, to study the collection of all periodic
functions with a fixed period, we make the underlying space periodic instead.

We shall think of the real line as wound around a circle, and our periodic
functions are just the functions on the circle.
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To fix the ideas, we shall have a particular circle in mind: the set Y of

complex numbers of modulus one. We have already seen that there is a

mapping 9 -> cos 9 + / sin 9 = eie of the real numbers onto Y which is

one-to-one on an interval of length 2n, except that both end points go onto

the same point. This mapping does precisely what we want: It winds the

real line around Y. A continuous function on Y is a function of eiB which

varies continuously with 9. Thus the continuous functions on Y are pre

cisely the continuous functions on R which are periodic of period 2n :

fix + In) = fix) forallxeP

In the past few chapters we have been studying the behavior of functions

from the point of view of differentiation. We have studied the Taylor

expansion, an expansion into polynomials, and we have related the co

efficients to the subsequent derivatives of the function. Since the simplest

periodic functions are the trigonometric polynomials, we attempt to expand
a given periodic function in a series of trigonometric polynomials. This

is the so-called Fourier series of the function. The interesting fact here

is that the relevant coefficients are found by integration. In fact, as we shall

see, the Fourier series of a function is a sort of an expansion in terms of an

orthonormal basis in the vector space of continuous functions on the circle

with the inner product

<f,g> = ^zfjiOM8)d9

Finally, as the circle is the set of complex numbers of modulus one, it is the

boundary of the unit disk in C and we can study the relation between Taylor

expansions in the disk and the Fourier expansions on the circle for suitable

functions. It will turn out that for such functions the Taylor coefficients

can also be obtained by integration on the circle.

6.1 Approximation by Trigonometric Polynomials

We shall begin with the attitude that we are studying complex-valued

functions on the circle. According to this view, the function e'e is the

simplest and the most basic function. This attitude is really just a con

venience; the point of view of strictly real-valued functions would consign us

to consider cos 9, sin 9 as the elementary building blocks of our theory.



454 6 Functions on the Circle (Fourier Analysis)

But, since eie = cos 9 + i sin 9, there is little difference, and we select the

more comfortable notation.

Our purpose is to describe a given function on the circle in terms of the

powers of e', both positive and negative. More precisely, if the series

CO

aj"" (6.1)
71= 00

converges for all 9, it defines a function on the circle. We ask the converse

question: Can we express any periodic function as such a series? If only

finitely many of the {an} in (6.1) are nonzero, there is no problem of con

vergence, and the sum defines a function, called a trigonometric polynomial.
This subject gets off the ground once we know how to compute the {an} from

the given function, and that leads us to our first proposition.

Proposition 1. Let P(9) = ^=_N anel"e be a trigonometric polynomial.
Then

2n J-n
d9

for all m.

Proof.

1 " c"
2 a e-<> dd

n=-N J
-27T,

1
=

am 2tt + 0 = am
2tt

Now, given a continuous function on the circle, if it has an expansion into

a series of trigonometric polynomials, we could expect that the coefficients

of this series will be related to the function in the same way. Thus we form

this definition.

Definition 1. Let / be a continuous function on the circle. The nth

Fourier coefficient of /is

A

\in)=l-fJiSin*dcp (6.2)
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The Fourier series of/ is the series

CO

fin)eM (6.3)
n
=

oo

Examples

1. Let/(0) = sin 9. Since

sin 0 =
2i

its Fourier series is

2i 2i

From (6.2) we can deduce (as is also easily computed):

f" sin 9 eie d9 =^ - f" sin 9 e~ie d9 =i
2nJ-n 2i 2nJ-n 2i

2. Since cos m0 = i(e'm9 + e~im6), the Fourier series of cos md is

3. Let/(0) = cos2 9. Then

/() = 1 f" cos2 0e-'"* <ty = -/- f (1 + cos 2^)e-'"* d<p
2% J

-n
47t J -n

a = -2,2

() = U = o

{0 n #
- 2, 0, 2

Thus the Fourier series of cos2 0 is

e-i29 + i + iei2e

(Notice that cos2 9 = 1/2(1 + cos 29) = 1/2(1 + l/2(ew + e~iB)) is a

trigonometric polynomial.)
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4. Let/(0) = n2 - 02.

/(") =^f i*2 ~ <P2)e-in* dcp

77-2 71 1 n 9tt^

/(0) =^L#~^J_/^
=

T"
" = 0

/(n)=-^-f 4>V^rf</> = (-!)" 4 n*0
2nJ-K n

by two integrations by parts. Thus the Fourier series of n 9 is

^ +2^> (6.4)
3 n*o n

Notice that by the comparison test, this series does converge to a

continuous function of e,e :

2n2
^ (ew)n

+ 2(-l)^
}

n#03 n#o n

In order to conclude that this is the given function 7t2 02, we shall

need more theoretical investigations.

5. It is not necessary for a function to be continuous to have a

Fourier expansion. It need only be integrable for the expressions

(6.2), (6.3) to be computable. Let us compute the Fourier series of

m~
0 0<O

m=hf0d^\

!in) = ^-fe"'U<j> = -^-e
2n Jo 2mn

inQ

o 27rm

0 n even, n ^ 0

n odd
n in

le~im - 1]
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Thus the Fourier series of/ is

1 1 einB

2+niJ^ ^
n odd

Recapturing the Function from Its Fourier Series

Notice that no claim of convergence in Definition 1 is made. In particular,
the series (6.5) appears not to converge, for the comparison test does not

apply. However, we cannot conclude that convergence fails; only that the

question can be exceedingly difficult. We ask instead what appears to be a

simpler question: Does the Fourier series identify the given function, and if

so, in what way ? We now try to investigate the recapture of a function by its

Fourier series, deliberately leaving aside all questions of convergence.
Let / be a given integrable function on the circle and consider the

"function"

9i0)= AnV
n= oo

By definition off(n),

oo 1 n

0(0)= t\ fit)**-''" d*
n= oo *-ft J ti

Now we interchange and J", obtaining

9iO) = ^-\ fit) e'"Wd<l>
L% <j

% r\ co

Well, it is too bad it turned out this way because we are still up against a

convergence problem, like it or not. In fact, the situation is worse: it is

untenable because

e
.'(-*) (6.6)

converges for no values of (b. This seemingly insurmountable obstacle can

be overcome, so long as we are not solely interested in pointwise convergence,

by a subtle mathematical technique: that of inserting convergence factors.
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If we replace the series (6.6) by the series

2 /-|"lein(('-*) (6.7)
n = oo

this series converges beautifully for r < 1 and the series (6.6) is in some ideal

sense the limit of (6.7) as r tends to 1. Stepping backward two steps, this

causes us to now consider the series

9ir,9)= 2 fin)rweM (6.8)
n= oo

and the limit lim gir, 9) (hoping of course that it is /(0)). Notice that the
r->i

series (6.8) does converge since the Fourier coefficients {/()} are bounded

(Problem 1) and the comparison test applies. Now, proceeding as above

but this time with g(r, 9), we obtain

1 rn

9ir, 0) = rf K rl-l^'-W d<b r < 1
Z7l J 71 o= 00

and here we can interchange and j" because the series in question converges
uniformly. The sum in the above integral can be put in a nicer form since

it is a sum of two geometric series.

CO CO 00

P(r, t) = rMe'"< = (re-")" + (re")"

1 + T-^-T, (6-9)
I -re-" 1 - re"

1 - r2 1 - r

1 + r2 - r(e" + e ") 1 + r2 - 2r cos t

The function P(r, t) is called Poisson's kernel (named after its French

discoverer, not because its whole technique is fishy), and the association of/
to g is called the Poisson transform. Thus, the Poisson transform

iPflir, 0) = ^ f M*
1 j. 2

1

,T m ,,
deb = 2 /(H)r""<r**

2nJ-n 1 + r 2r cos(0 - q>) =-,

(6.10)
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takes continuous functions on the circle into continuous functions of r, 9

for |r| < 1 ; that is, into continuous functions on the open unit disk. We shall

later see the importance of the Poisson transform from the point of view of

partial differential equations.

Examples (Some Poisson Transforms)

6. We can find the Poisson transform of functions on the circle quite

explicitly, using some complex notation and Equation (6.10). For

example, consider f(9) = cos2 9. Using Example 3 we have

Pfir, 9) = irVi29 + i + ir2ei2e = [1 + i(re~i&)2 + iireiB)2]

Thinking of r, 9 as polar coordinates in the disk, we can rewrite this

(using z = re'9 = x + iy, z = re',e = x iy):

Pfiz) = i[l + i(z2 + z2)] = i[l + Re z2] = i(l + x2 - y2)

Clearly,

lim Pfir, 9) = lim Pfiz) =
-

(1 + x2 - (1
- x2)) = x2 = cos2 0

r^l x2+}>2->1 2

7. The Poisson transform of

1 0>O

=\0 0<O

is given by

1 1 ,_,
r|n|e'"9 1 2 1 /r"einB r"e-inB\

Pf{r>e) =
2
+niL

=

2
+ nL2i[-n ^J

n>0

1 2 / z"\ 1 2 z2"
+ 1

Pf(z) =
-

+ -Im y - =
-

+
- Im 2 : TT

Now, we can use Taylor expansions to obtain a closed form for this

series.
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Now

Jr^-j(JnW)-Mf^)
(We have used real-variable techniques to find this closed form, but
once it is found it is valid for all z, \z\ < 1.) Thus

P/(Z)1 iimm(ii)2 it \1
- zj

As |z| -* 1, Pf(z) has a limit except for z -> 1, z -> - 1. We shall

now show that except for these two values, limP/(r, 0) =/(0).
r-l

lim Pf^, 9) = P/(l, 0) = 1
+
I Im ln(if!) (6.11)

Now

l+eie
_

(1 + ei9)(l - e-'9)
_

1 + eie - e~iB - 1

1 - eie
~

(1 - ei9)(l - e-'9)
~

l _ ew - e~m + 1

j sin 0
=

(l-cos0)
<612)

Since In z = In |z| + / arg z, Im In z = arg z for any complex number.

Since (6.12) is pure imaginary, we have

(n
- 0>O

1 + e" 12

Imlnr^ , n

2
0<O

Thus, referring back to (6.11)

lim Pf(r, 9) = \ + 1 fc) = 1 if0>O
r->l 2 7T \2/

1 1 / 7t\
= _ + _(__j

= 0 if,<0
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We are still hoping that it is true for all/that lim Pf(r, 9) =f(9). Ofcourse,
r->l

this turns out to be true. To see this we have to verify some properties of
Poisson's kernel. First we rewrite the Poisson kernel as

1 -r2
p(r< 0 =

,2
(1 - rf + 2r(l -

cos t)

From this reformulation we easily conclude the following properties:

(i) P(r, 0 > 0 for all values of r, t, r < 1

/\ n, x
1_r2 l+r

(n) P(r,0) = -

-2=- >ooasr->l

(1 r) \ r

(iii) On the other hand, for values of t ^ 0, P(r, ()->0 as r->l. If

l'l><5,

Pir,= *-:: ^
x-ri

-

(1 - r)2 + 2r(l - cos d)
~

2r(l -

cos S)

uniformly as r -* 1.

For a fixed value of r, the graph ofP(r, r) is drawn in Figure 6.1. As r -* 1
,

the peak goes up and the valleys get larger and deeper. Finally,

(iv) ^fp(r,t)dt = l

This can be computed directly; however it is easier to use Equation (6.10)
in the particular case where / is the function which is identically one (see
Problem 2).

Theorem 6.1. Iff is a continuous function on the circle,

limP/(/-,0)=/(0)
r-l

Proof. Using property (iv) above we can write Pf(r, 8) f(8) as an integral,

(Pf)(r, 8) - f(8) =
i- f [f(<j>)

- f(9)]P(r, 8-<j,)d<t>
2tt J_
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nP(r,l)

Figure 6.1

For any S > 0 we break up the integral into two pieces :

(Pf)(r, 8)
- f(6) =

1 f [f(<f>)
- f(8)]P(r, 8 -

<j>) d<j>
Z7TJ|<,_e|.s{

+ T-f Uift-fWmr.d-fidt
Z.TT J\i),-e\Z6

Now, by (iii) the integrand in the lower integral tends to zero as r -> 1 and, by

continuity, \f(<j>) f(8)\ is small for all <j> near enough to 8 so that we can make

the first integral small by taking S small.

More precisely, let e > 0 be given. Let S be such that

\f(<t>)-m\<l if|0-0|<8 (6.13)

Given that 8, by (iii), there is an -q > 0 such that for \r 1 1 < -q,

{ P(,^_0)^<-^Jl-6|a Z. ||/ I co
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Then for \r - 1 1 < ij,

\Pfir, 6) -f(r, 0)1 <; f |/(0) -f(8)\P(r, 8 -

<j,) d<f>

+^/ \f(<f>)-f(0)\P(r,8-<f,)d<l>

-t'rl P(r,6-<j>)d4>

+ =-2 11/11. f P(r, 8 -

<f>) d<f>
i77 Jl-l2f

ll/IU TS

~2'
+

* 2||/|U"e

We seem to have come a long way away from our original quest, but we
have not really. The content of Theorem 6.1 is this: Let /be a continuous

function on the circle. Its Fourier series

fin)eM
n=

~

oo

is too hard to study as regards convergence, but it does represent /in some

relevant sense. It
"

almost converges
"

to /; that is, if we put in factors to

ensure the convergence and consider instead

00

Pfir, 0) = finy^e
71=

~

00

then for r very close to 1, this function is very close to/. This allows us to

make important assertions based on any information on the Fourier series of/.
For example,

Collorary 1. Iff is a continuousfunction on the circle, andY^=-x |/()| <

oo, thenf is the sum of its Fourier series,

00

/(#)= fin)e'"e
n= oo

Proof. The condition allows us to conclude on the basis of the comparison test

that the Fourier series converges; the essential content here is that it converges to/.



464 6 Functions on the Circle (Fourier Analysis)

In fact, by the comparison test, we can conclude that

(Pf)(r, 8) = 2 f(n)r"e""
n=

-

oo

is a continuous function on the closed unit disk : all r < 1 . Then for any 8, by

Theorem 6.1.

f(9) = lim Pf(r,8)= lim f f(n)rMeM = f f(n)e'"e
r-+l r~* 1 n= oo n= oo

In particular, if/() vanishes for all but finitely many n, then /is a trigono
metric polynomial. Thus the trigonometric polynomials are precisely the class

of continuous functions on the circle with only finitely many nonzero Fourier

coefficients. A more basic consequence is that a function is uniquely deter

mined by its Fourier series.

Collorary 2. Iffandg are continuous on the circle andf(n) = c}(n)for alln,

thenf=g.

Proof, fg is continuous on V, and (fg)'(n)=f(n) g(n)=0 for all n.

Applying the first corollary to/ g we see that it is the sum of its Fourier series,

which is identically zero. Thusfg=0, so /= g.

Conditions on the Fourier coefficients of a function, such as that in

Corollary 1
,
are not hard to come by. For example, suppose / is a twice

continuously differentiable periodic function. Then by integrating by parts
we have

Since /" is continuous on the circle, it is bounded, say by M. We obtain

these bounds on the Fourier coefficients of/:

Thus \f(ri)\ < oo.
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Corollary 3. Iff is a C2 function on the circle, it is the sum of its Fourier

series.

We shall have an even better result in Section 6.4. Nevertheless, Theorem

6.1 does allow us to make deductions on the convergence of the Fourier

series. As one last application, it tells us that although we may not be able

to approximate a function by its Fourier series, we can nevertheless approxi

mate it by some sequence of trigonometric polynomials.

Corollary 4. A continuousfunction on the circle is approximable by trigono

metric polynomials.

Proof. Using the notion of uniform continuity, we can be sure, in the proof of

Theorem 6.1, that the 8 chosen so that (6.13) is true is independent of 8. Thus,

in the rest of the argument we find an r < 1 such that

\Pf(r, 8)-f(9)\<e for all 6

Now, the series 2=-> f(.n)rMe'"0 converges uniformly to Pf(r, 6), if r < 1. Thus

there is an N such that the partial sum Q of the terms between TV and N is every

where within e of Pf(r, 8). Thus

12(0) -f(9)\ < 12(0) - Pfir, 0)1 + IP/0", 0) -/(0)l <e+e=2e

for all 0, as desired.

EXERCISES

1. Find the Fourier series of the following functions on the circle.

(a) f(8) = 82 (b) /(0)=cos50

(c) /(0) = e'" p, > 0, not necessarily an integer.

(d)

/(0) =

0 -7T<0<

-2<e<

-0 +

77

2

77

O<0<^

0
- <0<77
2

_ _

(e) /(0)=|sin0|
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(f) f(8) = sin 0 + cos 0

(g) /

0 -7T^0< -

1
-2*0*0

/(0) = {
0

77

O<0<-
2

1

77

-<0<7T
2~

~

(h) f(8)=e

(i) f(8)=e
2. Find the Poisson transforms of the following functions on the circle:

(a) cos3 0 + sin3 0

(b) (1 + cos2 0)-1

(c) Exercise 1(c).

(d) Exercise 1(d).

(e) Exercise 1(g).

(f) (l+e')2

PROBLEMS

1 . Show that the Fourier coefficients f(n) of a continuous function /

defined on the circle are bounded :

|/()|< H/ll =max{|/(0)|: -77<0<77}

2. Show that

r~ \ P(r, t)
2rr J_

dt=\

by computing the Poisson transform of the function 1.

3. Show that if /is a real-valued function on the circle, f(n) =f(n)~.
4. (a) Show that the Poisson transform of /can be written

Pfir, 0) =/(0) + 2 (f(-n)z- + j\n)z")

(b) Show that if f(n) = 0, n > 0, then Pf is the sum of a con

vergent power series in the unit disk.
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(c) Show that if /can be written in the form

f(8) = F(e">)

where F can be written as a convergent series in powers of z, z, then

Pf(z) = F(z)

5. What is the Poisson transform of these functions?

(a) expte'8) (d) (l+cos20)-'

(b) (1+2Z)"1 (e) ln(5 + z)

(c) (z+z)" (f) exp(cos0)
6. We can use the approximation theorem (Corollary 4) to prove the

following fact.

(Weierstrass Approximation Theorem). Iff is a continuous function on the

interval [0, 1] and s > 0, there is a polynomial P(x) = a0 + aYx + +anx"
such that

\f(x) - P(x)| < 1 for all x e [0, 1]

Prove it according to this idea: First extend /as a continuous function on

the interval [ n, 7t] so that/( 71) = fin). Now view the extended function

as a function on the circle and, by Corollary 4, approximate it by a trigono-
N

metric polynomial of the form 2 an e'"e- Now use the fact that the 2N

n= -N

functions {einB : -N <n < N} can be approximated by polynomials in 0.

6.2 Laplace's Equation

The techniques described in the previous section came out of Poisson's

work on the theory of heat flow. Suppose D is a domain in the plane

(representing a homogeneous metallic plate); we wish to study the tempera

ture distribution on this plate subject to certain sources of heat energy. Let

u(x, t) be the temperature at the point x at time /. We shall see in Chapter 8

that, as a consequence of the law of energy conservation, the temperature

function w behaves according to this partial differential equation (appropri

ately called the heat equation) :

du
_

1 ld2u d2u\

dt~a1\dx^
+

'dy2)
(6.14)
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Now, suppose our sources ofheat maintain the temperature at the boundary
of D, and there is no other source or loss of heat. Then, as t -* oo the

temperature distribution will tend toward equilibrium: that state at which

du/dt = 0. This equilibrium (or steady-state) temperature distribution must

therefore satisfy Laplace's equation:

d2u d2u

dx-2
+

d?
= ^

This is sometimes denoted Am = 0. Solutions ofLaplace's equation are called

harmonic functions.

The Poisson transform has to do with the solution of this steady-state

problem when D is the unit disk. Suppose then, that we are given a tem

perature distribution f(9) on the unit circle ; we wish to find a continuous

function u(r, 9) defined for r < 1 such that Aw = 0 and w(l, 0) =/(0). In

order to attack this problem, we assume that u can be represented, on each

circle r = constant by its Fourier series :

u(r,9)= 2 ,(>)<" (6.16)
n= oo

Our conditions become

(i) an(l)=:f(n) = ^fj(9)e-i"Bd9 (6.17)

,-n *
d 1 du\ d2u

n

(11) Au = rdrH)+W2
=

<6-18>

(We have rewritten Au in terms of polar coordinates so we can apply it to the
Fourier series. We leave it to the reader to derive the polar form of the

Laplacian.)

Now, computing (ii) term by term in the series (6.16), we obtain

OO

0= ir2< + ra'n
- n2an)einB = 0

Since the zero function is represented only by the zero Fourier series we

deduce that

r2a'^ + ra'n-n2an = 0 (6.19)
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for all n. This ordinary differential equation is easily solved :

1, logr n = 0

r", r~" n=0

We have only one boundary condition (6.17), however we do want the

functions continuous at r = 0, so the solutions log r, r
~

'"'
are excluded. Thus

we must have a = /(n)r|n|, and the solution must have the form

u(r,9)= f(n)r^einB
n oo

which is Poisson's transform. Hence, if the problem is solvable, the solution

must be given by Poisson's transform. Conversely, the following is a solu

tion.

Theorem 6.2. Let f be a continuous function on the circle. There is a

unique function u, harmonic in the disk and assuming the boundary values fi

u is the Poisson transform off:

*. D - J/*1"1'"*
-

5 />> i + r.-'2"^-)*

Proof. We need only verify that u is indeed harmonic. Since we can differ

entiate under the integral sign

A" =t J_. /WA l+r2-27cos(0-0)*

we need only show that the Poisson kernel is harmonic. That can be done by

direct computation, or by referring back to Equation (6.9). There we have

^e)=rr^-1+r^ = TJ^--1 + rz

= -1 +2 Re

Now, (1
- z)"1 is a complex differentiable function, and we have already seen that

the real part of such a function satisfies Laplace's equation, see Problem 5.7.2

Thus AP = 0.

G-J
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To recapitulate, Laplace's equation for the disk with given boundary values

is easily solved by Fourier methods. If/is the boundary temperature distri

bution, the solution is

OO 00

00= /(/0r"V'"9=/(0)+ (/(-n)z"+/(n)z")
n= oo n= 1

(since r|n|e'"9 = z" for n > 0, rweinB = z" for n < 0).

Examples

8. Find the solution of Laplace's equation with boundary values

/(0) = cos3 9 + 3 sin 30. This is easy to do, for we can easily

recognize the function as the boundary value of the real part of a com

plex differentiable function. Since

cos 0 = -

(z + z) sin 30 = (z3 - z3)
2 2i

on the unit circle, we have

for z = e,B. Thus the solution is given by the same expression for all

z, \z\ < 1 since it is clearly harmonic.

9. Solve Laplace's equation with boundary values /(0) = |0|.
Since |0| is not a trigonometric polynomial, we must compute the

Fourier expansion.

fin) = -f \9\e-'"B d0 =-\ 9e~inB d9 + - fee2n J
-K 2n J

- 2n Jo

=

t- Co(eM + e-'"6) d9 = - Ce cos nB d9
2% Jo 71 Jo

1 rn 1
= sin n0 d9 = r cos nB
nn Jo nn

'dd

n

= zl ( odd

o nn2 \n # 0

f(o) = -fed9 = ^n Jo 2
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Finally,

n 2 z" + z" n z2"+1+z2n+1
"/ (Z)

=

o

=
~

2 172
=

o

_

2 /") , 1\2
2 7t B=i n 2 =i (zn + 1)

n odd

The problem analogous to the above in the case of a general domain is

known as Dirichlet's problem. More precisely, Dirichlet's problem is to

find for a given domain D and function /defined on D, a function harmonic

in D and taking the given boundary values. In 1931, O. Perron gave an

elementary, but extremely clever argument which proved the existence of a

solution to Dirichlet's problem. Poisson's method plays a strategic role in

Perron's arguments, which we shall not go into here. However, we shall

verify that the solution is unique : there can be at most one harmonic function

with given boundary values. This follows from the mean value property of

harmonic functions.

Proposition 2. Suppose u is a harmonic function in the domain D. If

A(z0 , R) cz D, then

(z0) = 2^f_ "Oo + ReW) dB

that is, u(z0) is the average of its values around any circle in D contained in D.

Proof. We can expand u in a Fourier series around any circle \z z0 1 = r,

r^R:

u(z)= 2 an(r)eine r<R where z = z0 + re'
n= oo

Since A = 0, we must have a(r) = /(>"", where /(0))
= u(z0 + Re"), already seen.

Thus

u(z) = 2 fin) \z - z0|""e'"
<"*<= -*o>

1
n

1 c11

u(z0) = /(0) = f f(8)dd= u(z0 + Re">)
ZTT J

_
. Z7T J

_

d8
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Corollary 1. Suppose u is harmonic on the closed and bounded domain D.

Ifu>0on dD, then u > 0 throughout D.

Proof. Let us suppose that the conclusion is false. That at some point z0 inside

D, u(z0) < 0. We shall derive a contradiction. We may take for z0 a point at

which u takes its minimum value. There is such a point since D is closed and

bounded, and it is interior to D since u > 0 on dD. Let A(z0 , R) be the largest disk

centered at z0 contained in D. The boundary of A(z0 , R) must touch dD (see

Figure 6.2), for if not we could find a larger disk centered at z0 and contained in D.

Thus there are points on the circle \z z0\ = R at which u > 0. Since (z0) is the

average value of u on this circle, and u(z0) < 0, there must be points on this circle

at which u < u(z0) in order to compensate. But u(z0) is the minimum value of u,

so we have a contradiction. More precisely, since u(z) > u(z0) for all z e D,

u(z0 + Re'e) u(z0) > 0 for all 0. On the other hand, by the mean value property

f ((z0 + Rew)
-

u(z0)) dd = 0
'-71

When the integral of a continuous nonnegative function is zero, that function is

identically zero. Thus,

w(z0 + Re">) = w(z0) for all 8

This contradicts the fact that for some 0, u(za + Reie) > 0.

Figure 6.2



6.2 Laplace's Equation 473

Corollary 2. A function harmonic on a closed and bounded domain D is

uniquely determined by its boundary values.

Proof. Suppose that u, v are both harmonic in D, but u = v on dD. Let e > 0.

Then u v + 6, v u + e are both positive on dD. By Corollary 2, they are both

positive in D, thus

u>v s v>ue in D

Since e is arbitrary, we may now let it tend to zero. We conclude that u > v and

v > u throughout D. Thus u = v in D.

Another problem of heat transfer is this : find the steady-state temperature
distribution on the unit disk assuming a given rate of heat flow through the

boundary, and no other source or loss of heat. Now the velocity of heat

flow, denoted q, is a vector field on the domain and it is a law of thermo

dynamics that this field is proportional to the temperature gradient, but

oppositely directed. Thus, in this problem, our given data are the rate ofheat

flow perpendicular to the boundary of the unit disk, which is proportional to

du/dr on the boundary. By the law of conservation of energy, since we are

assuming a steady state, the total energy change is zero, thus we must impose
this condition: $*_K du/dr(e,B) d9 = 0. Thus, the mathematical formulation

of this problem (known as Neumann's problem) is this : Find a function u

harmonic in the unit disk such that du/dr(e,B) assumes given boundary values

#(0). We impose the condition JZ #(0) d9 = 0. (It is necessary to impose

this condition in order to obtain a solution, for mathematical reasons, as you

will see in Problem 8.) We again solve this problem by Fourier methods.

Find

00

u(reie) = 2 anir)einB
00

so that (i) idujdr)(eie) = gi9), Am = 0. Again, this leads to the ordinary

differential equation (6.19) with the boundary condition a'n(\) = gin). The

solution continuous at the origin is \n\~1g(n)rM. Thus the solution must be

given by

u(reiB) = V ^ r^eine (6.20)
-, n

We will omit the proof that this function does solve Neumann's problem;

the argument is much like that in Theorem 6. 1 . We can, of course, collapse
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(6.20) into an integral formula :

u(reie) = f - IV" f ai<P)e~""P dcp
-

oo n \_zn J -

*

r\n\e'"8

1 r* rne-in(fi-<l>) oo r"ein(e-<l>y
+

i /"

.= i n = i n

oo (ye'(9_*))ni

#

= i /",(*) Re ^-nJ-K Ln=i "

= - f" <?(</>) Re[ln(l
- re^9"*')] deb

nJ-n

Now

so

|1 -reu\2 = l+r2-2cost

Re ln(l
- re1') = i ln|l - relt\2 = \ ln(l + r2 - 2r cos t)

Thus the solution to Neumann's problem takes the form (6.20) or

u(reiB) = ^- f
*

g(<b) ln[l + r2 - 2r cos(0 - </>)] deb
2nJ-K

EXERCISES

3. Solve Dirichlet's problem in the disk with these boundary conditions:

(b) f(8) = sin2 0 - cos2 0

(C) /(0)=772-02

(d) /as is given in Exercise 1(c).

(e) /(0) as is given in Exercise 2(f).

4. Solve Neumann's problem with these boundary conditions:

(a) f(8) = sin 0 + 2 cos 20

/w-i i: Si!
(c) /as is given in Exercise 3(a).



6.2 Laplace's Equation 475

PROBLEMS

7. Show that the Laplacian is given in polar coordinates by

8 ( du\ d2u
AU =

r7rV^)+W2

8. Verify that it is necessary that

1
R

f g(8)d8 = Q
2tt J-

for there to be a function u harmonic in the disk such that

du

lim- (r, 8) =g(8)
r-,i or

9. Verify by direct computation that P(r, 8) is harmonic.
10. Show that if /is a complex differentiable function (it satisfies the

Cauchy-Riemann equations), then /is harmonic.

11. We can prove, using the Poisson transform, this remarkable fact

about complex differentiable functions :

Theorem. Suppose that f is a complex differentiable function on the unit

disk. Then f is the sum of a convergent power series centered at the origin.

The proof goes like this: Let #(0) =f(e[0). Since /is harmonic in the

disk (Problem 10), it solves Dirichlet's problem with the boundary values g.

Thus f(re">) = Pg(re">). Now prove this fact.

(a) If the Poisson transform Pg is complex differentiable, then

g(n) = 0 for n < 0. (Hint: Apply d/dx + i d/dy to the expression

Pg(re') = <?(0) + 2 ig(-n)z" + g(n)z")

(b) Deduce from (a) that

fire") = 2 gin)z"
n = 0

12. Under what conditions on/ g is P(fg) = P(f)P(g)l
13. (a) Show that if/ is a continous function on the domain D with the

mean value property :

If"
f(z0) =

^ J /(z0 + Re") d8 for every A(z0 , R) <= D
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then /satisfies a maximum principle : f(z0) < max{/(z): z e dD}, for every

z0e D.

(b) Conclude that a function having the mean value property

is harmonic.

14. Prove: A bounded function defined on the entire plane which is

harmonic, must be constant.

6.3 Fourier Sine and Cosine Series

There are many notationally different ways of expressing the Fourier

expansion of a function, depending mostly on the dictates of the problem at

hand. We shall devote this section to the development of these various

expressions.
First of all, since the main physical study is that of real-valued functions

we should introduce the purely real notation. We merely convert the

Fourier expansion 2/(")e'"9 via tne expressions

e'"e = cos nB + i sin n9 e~~
inB
= cos0 - i sin n9 n > 0

Thus the Fourier expansion will take the form

00

do + An cos n9 + B sin 0 (6.21)
n = 0

where the ,4's and B's are found from the Fourier coefficients C =/() as

follows :

oo 00

C einB = C(cos n9 + i sin n9)
n= oo n= oo

= C0 + 2 [(C. + C_)cos n9 + i(C
-

C_) sin 0]
n=l

Thus

,40 = C0 /f = Cn + C_ B = i{Cn-C.} n>0

Notice that if/ is real valued

c-n=2n! fi<t>y'"Pd<t>= yJ f^e~itt*d$
1

= c
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Thus we have

A0 = C0 = f_Ji<b)d(b
1 i-n

A = 2 Re C = - fi<b) cos neb deb n>0 (6.22)
n J

-n

1 c"

B = 2 Im C = - fieb) sin n< d</> n > 0 (6.23)

Furthermore,

C = K^ + iBn) C_ = i(/l
- iBn) n>0

Examples

10. Express the Fourier series of n2
- 92 in the form (6.21). From

Example 4, we have

3 n*o n

Thus

2 (-1)"

^0=-tt2 An =4^- P = 0

3

and we obtain this Fourier expansion :

ni - B2 = %- + 4 2^ cos n0
3 >o n

Notice that equality is justified by Corollary 1 to Theorem 6.1 since

the Fourier series does converge. Evaluating at 0, we obtain this

interesting fact

v
(-1)" y

nk n2 12
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11. Express the Fourier series of |0| in the form (6.21). Reading

from Example 9, we have the Fourier series for |0| :

7t 2 e-inB + eine

2~nh n2

Thus we have the real Fourier series

7T 4 cos0
0 =

~ 2 2~~

Evaluating at 0 = 0, we obtain

k n2
~

8

12. As usual, trigonometric polynomials can be handled directly,
without computation of integrals :

e + e-;V 1
=

77 (**" + 4e2M + 6 + 4e-2i9 + e'4iB)
2 / 16

= (2 cos 40 + 8 cos 20 + 6)
16

3 1 1
cos4 9 = -

+
-

cos 20 + -

cos 40
8 2 8

Even and Odd Functions

A function of a real variable is called an even function if/(x) =/( x) for all

x, and it is an odd function iff(x) = -f(x). Notice that the product of two

odd functions is even, and the product of an odd and even function is odd.

If/is an odd function on the interval [ A, A~\, then

f f(t) dt = f f(t) dt + \Af(t) dt=- \Af(t) dt + f/(0 dt = 0

We can conclude that if/ is an even function on the interval [ n, n\, its

Fourier series is purely a cosine series. For in this case f(eb) sin neb is odd

for all n, so the integrals (6.23) all vanish. Similarly, if/is an odd function its
Fourier series is purely a sine series.
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Example

13. The Fourier series of 0 is of the form

B sin n9

since 0 is an odd function. Here

lf" 10 1 r* cos n0 2

,
= -1 0sinn0d0 = --cos0 +-| </0=--(-l)n

7t J-n 7t n -n n J
-n n n

Thus 0 has the Fourier series 2 ( l)"/n sin n9.
n=l

Now, all our computations have been done for periodic functions of

period 2n. Periodic functions arising in physics do not usually have such a

convenient period, yet they are subject to Fourier methods merely by a

normalization. Suppose that / is a periodic function of period L. Then

g(B) = f(L9/2n) is periodic of period 27r. For

giO + in) =/(|(0 + 2,)) =/(! + L) =/(f?) = ,(0)

Now, if g can be expanded in a Fourier series :

3(0) = A0 + (A cos w0 + Bn sin n0)
n=l

then we can write

/27rx\
"

(2nnx\ . (2nnx\ nAS

fix) =g^f =a0+ 2A cos(-r--) + Bn [-r-) (6-24)

where (as is easy to compute by the change of coordinates eb = 2L~~ix)

1 ,L/2 2 rL'2 2nnx

Ao = t\ fix)dx An =
-

/(x)cos- dx (6.25)

2 rL/2 27tnx
,

B = T\ fix) sin dx (6.26)
LJ-L/2 L
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With these formulas the Fourier analysis of functions periodic of period L is

made possible.

Fourier Cosine Series

There are yet two more variations which are, as we shall see, of value in

the study of partial differential equations. Let/be a given periodic function

with period L and define

O<0<7T

(6.27)

-7T<0<O

Then g is an even function on the interval [ n, n\, so it can be expressed by
a Fourier series involving only cosines :

OO

g(9) = A0+ 2 An cos n0
=i

where

A0 = f g(6) d9 A = -\ g(9) cos n0 d9
zn J

-n n J
-n

= - fg(9) d9 = - f
*

g(0) cos n9 d9
n Jo n Jo

Now, making the substitution g(9) =f(L9/n) in the interval 0 < 0 < n, these

expressions become

00
nnx

fix) = A0+ E4,cos (6.28)
n=l -.

Ao = T \ /(*) dx a = t\ fix) cos ~r dx (6-29)
L, Jo Li Jo L

We pause to remind the reader that the use of equality in Equations (6.24)
and (6.28) is not literal, it holds only if the series converge (say if g is twice

continuously differentiable). The point is that in such cases the expansions

(6.24), (6.28) are valid, where the coefficients are defined by (6.25), (6.26), or
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(6.29), respectively. The choice of these expansions is free it is usually

dependent on the demands of the particular problem at hand. Equation

(6.28) is called the Fourier cosine series for the function /. Of course, if we

define # as an odd function, instead of the expression (6.28) we can obtain the

Fourier sine series for/:

nnx

fix)= Bsin (6.30)
k=l L,

where

2 rL nnx

Bn = -j fix) sin dx (6.31)

We leave the verification of this possibility to the readers as a problem.

EXERCISES

5. Find the Fourier expansions into sines and cosines for these functions :

(a) cos8 0

(b) sink 0 k a positive integer

(c) /as given in Exercise 3(a).

(d) /as given in Exercise 1(g).

(e) /as given in Exercise 1(b).

6. Find the function whose Fourier expansion is 2^= - e'"e/in.

1. Find the Fourier sine and Fourier cosine series for these periodic

functions of period 1 .

(a) /(x) = l,allx

(b) f(x) = sin(2rrx)

(c) /(*) = cos(2rrx)

(d) /(*) = {
1 0<x<l/2

1/2<x<1

(e) f(x) = sin(77x)

... jx 0<x<l/2
(f) /(*) =

{!_* l/2<x<l

(g) f(x) = sin(7rx) + cos(77x)

8. Show that any periodic function on the circle is the sum of an even

function and an odd function.

9. What is the Fourier expansion of f(8) +f(n 8) in terms of that for

/(0)?
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6.4 The One-Dimensional Wave and Heat Equations

In physics, Fourier analysis begins with the study of wave motions. Sup

pose we have a homogeneous string of density p and length L lying on the

horizontal axis in the plane which is kept extended by equal and opposite
forces of magnitude k at the end points. If we pluck the string, it will follow

a motion which is (classically) determined by Newton's laws. We shall

derive the differential equation governing the motion. At some time t the

string has a shape somewhat like that pictured in Figure 6.3. We shall refer

to a point on the string according to the distance s, measured along the string
from the left end point. The position in the plane of the point at distance s1

at time / will be denoted by z(s, t). This is the function that fully describes

the motion.

Now, if we argue as if the string were a collection of points, we will get

nowhere. For the only forces acting on the string are those obtained by

transferring the equal, but opposite forces at the end points tangentially

along the string. Thus, at any point the sum of the forces acting is zero, so

there can be no motion. As that is contrary to fact, this model of the string
is inadequate and we must select another.

Now we consider the string as a large finite collection of segments and

again try to deduce the equation of motion from Newton's laws. Having
done that, we can idealize by letting the number of segments become infinite

(as their lengths tend to zero) and obtain a differential equation. Let s0

and s0 + As be the end points of such a segment (see Figure 6.4). The mass

of this segment is pAs and the forces acting on it are opposed tangential
forces of magnitude k acting at the end points. Letting T(s) be the tangent
vector at the point s, these forces are thus kT(s0), kT(s0 + As), respectively.
If A is the acceleration of this segment, we have by Newton's laws

pAsA = k[T(s0 + As)
-

T(j0)]

Now, T(s) = dz(s, t)/ds and lim A = dz/dt(s0 , t). Thus
As->0

A
k (dzlds)(s0 + As, t)

-

(dzlds)(s0 , t)
A =

p As

and now letting As -> 0 we obtain the equation of motion:

d2zt kd2zt
Wis0,t)

=

-^-2is0,t)
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Figure 6.3

This equation, called the one-dimensional wave equation, is usually written

d2Z VOL

(632)
ds2 c1 dt2

(where the substitution c2 = kjp is legitimate since both k, p are positive).

We now make the (physically plausible) assumption that the horizontal

motion is negligible (for we are interested only in almost horizontal wave

motions with small fluctuations). This assumption allows the replacement

of s by the horizontal coordinate x, and the positive vector z by only the

vertical coordinate y. Thus (6.32) becomes simply

d2l
dx2

L8ll
c2 dt2

(6.33)

The motion of the string is completely governed by this partial differential

equation and the initial displacement and velocity:

yis,0)=fis)
d_y
dt

is, 0) = g(s) (6.34)

-kT(s,,)

So + AS

kT(s + as)

Figure 6.4
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The technique for solving this differential equationwith boundary conditions

is the same as in the theory of ordinary differential equations. We find an

independent set of solutions of the general equations and hypothesize that the

solution we seek is a linear combination of these. We then identify the

coefficients by substituting the initial conditions. However, the situation is

more complicated than in the one-variable theory. The space of solutions of

(6.32) is infinite dimensional, so the particular solution cannot be picked out

of the general solution by means of simple linear algebra. This difficulty
will be overcome, as we shall see, because the form of the general solution

will be that of a Fourier expansion and so the initial data will give us the

coefficients by Fourier methods.

Let us now solve the differential equation

d2y
_

1 d2y

dx^'STt,--22 (6-35)

for a function y defined on the interval [0, L] and where these conditions must

be satisfied

y(0, 0 = 0 y(L,t) = 0 all t (6.36)

y(x,0)=f(x) 8^(x,0) = g(x) (6.37)

for given functions/ g. First, we put aside the initial data (6.37) and find all

solutions of Equation (6.35) subject to (6.36). Since we have no tech

niques available, we have to make a guess at the form of the solution, and

hope that our guess is general enough (of course, in the end it will turn out to

be so). The guess that works is

y(x, t) = F(x)G(t)

and (6.35) becomes

F"(x)G(0 = ^P(x)G"(0

or, what is the same (since we exclude the zero solution),

F"(x)
=

1 G"(t)

Fix) c2 G(t)
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The left-hand side is independent of t, and the right is independent of x.

Since they are the same, they are both constant. Thus, there must be a A

such that

^ = A ^ = x
F c2 G

Now, incorporating the conditions (6.36), we arrive at this one-variable

boundary value problem :

F" - XF = 0 for some I (6.38)

F(0) = 0 F(L) = 0 (6.39)

We can find all solutions of this problem. First of all, we see from (6.38)
that the general form of F is

Fix) = cx exp(x/Ax) + c2 exp( - ~Jkx)

Substituting the boundary conditions (6.39), we have

0 = F(0) = c, + c2 0 = F(L) = ct exp(N/lL) + c2 exp(-N/l)

In order for there to be a solution for both equations we must have c1
=

c2

and

exp(N/iL) = exp( -JXL) or exp(2N/AL) = 1

Thus we must have 2^JXL = 2nni for some n > 0, or yJX = nni/L. Therefore,

the only possible solutions of (6.38), (6.39) are

[nni\ 1 nni\ .
Inn \

F(x) = expl Ix
- expl Jx

= 2\ sinl xl all n > 0

Corresponding to the solution P(x) = sin(7tn/L)x, we now solve for G:

n n

G"--1}?G

The solutions are Spanned by G(t) = cos(nn/Lc)t, sininn/Lc)t. Thus, all
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solutions of (6.35) of the form F(x)Git) are these:

. [nnx\ [nn \ . [nnx\ Inn \

sinl^r)C0Sfcv sinhr)smM (6.40)

We now return to our particular initial conditions (6.37) and hope to find a

linear combination of the functions (6.40) which has those initial conditions.

Of course, the linear combination will satisfy (6.37) since it is a linear differ

ential equation. (However, we must caution the reader that ours will be an

infinite linear combination so questions of convergence are inevitable. If

the initial data are well behaved, these problems disperse as you shall see in

Problem 15.) Thus we seek

yix, t) = A. cos
(nn \

+ 5|sin t

nn

sm| x

satisfying the conditions (6.37):

00 Inn \
fix) = yix, 0) = 2 A sinl x I

/ dy ^
nn

. (nn \
,(x) = -(x,0)=2^^sin(-x)

But we can solve these equations, for these are just the expansions of/ and g
into Fourier sine series. We collect this discussion into the following
proposition.

Proposition 3. If the functions f g defined on the interval [0, L] are well

behaved (say at least twice differentiable), then the wave equation

dx2~~?dT

with the boundary datayifJ, t) = 0, y(L, t) = 0 and the initial data y(x, 0) =/(x),
(dy/dt)(x, 0) = g(x) has a solution. The solution is given by

yix, t) =
n = l

(nnt

A"C0S[Tc
\ r. tnnt\\ (ttnx\

)+Bsin(-)jsin()
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where

2 rL
. (nnx\ ,

2c rL
_ . (nnx\ ,

"
=

I J ^^ Sm\~L~) B" =
~n J ^ Sinl~L~)

Examples

14. Solve the wave equation

d2y 1 d2x

ch?~4li2

on the interval [0, 7r] with initial data

yix, 0) = sin 2x (dy/dt)(x, 0) = sin2 x

Now c = 2, L = 7t. The Fourier sine series for y(x, 0) is just sin 2x,

so A = 0 unless n = 2, A2 = 1. Now

4 c" . , . , ,
4 (" 1 -

cos 2x
.

t N ,

B_ = sin x sin(nx) dx = sin(nx) dx
nnJo nnJo 2

= 0 if n is even

We concentrate now on the case where n is odd :

2 2 2 rn
Bn = cos(2x) sin(nx) dx (6.41)

nn n nn Jo

Now

f*
cos(2x) sin(nx) dx

'o

cos(2x) cos(nx)
71 2 sin(2x) sin(nx)

0n n

4 r"4 ("
+ r cos(2x) sin(x) dx
n Jo
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Thus

/ 4\ r" 1 2
1 A cos(2x) sin(nx) dx =

- (1 cos nn) =
-

(n odd)
\ n / Jo n n

Now, putting the result of this computation into (6.41):

2

B =

nn

2n

n n 4

-16

n\n2 - 4)

Thus the solution is given by

16 "
sin nt\2 .

v(x, t) = cos f sin 2x ) ,, ,
sin nx

7r = i nz(n2 -4)
n odd

16 sin(mf) sin 2mx
y(x, t) = cos t sin 2x 2 7; TTiZj 1

n m^i (2m + l)2(4m2 + 2m -

3)

15. Solve the same wave equation with initial data

dy
y(x, 0) = sin x + sin 5x + 2 sin 6x (x, 0) = 0

dt

The expressions for the initial conditions are the Fourier sine series

for those functions; thus we can read off the solution:

t 5t

y(x, t) = cos
- sin x + cos sin 5x + 2 cos 3r sin 6x
2 2

Heat Transfer

Another physical problem which gives rise to a partial differential equation
which can be solved in a similar way is the problem of one-dimensional heat

transfer. We shall derive this equation here (the derivation in Chapter 8 of

this equation in higher dimensions shall be seen to be completely analogous).

Suppose we are given a thin homogeneous rod of length L lying on the

horizontal axis. Let u(x, t) be the temperature at x at time t. We assume

that there is no heat loss, and the temperatures at the end points aremaintained

constant. Now the basic physical law here is that the flow of heat is pro

portional to the temperature gradient, but points in the opposite direction.
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Thus, during a small interval of time At the heat (energy) passing from left to

right through a point x0 is proportional to (du/dx)(x0) At. If we select

a segment of the rod with end points x0 and x0 + Ax the increase in energy

in that segment of the rod is proportional to

/ du \ ( du \

-(--(x0 + Ax)At) + (--(x0)A,) (6.42)

On the other hand, the increase in energy is proportional to the product of

the mass and the change in temperature. Thus (6.42) is proportional to

An Ax. Letting k2 be the constant of proportionality we have, for the

period of time At:

Am Ax = k2 (x0 + Ax)
-

(x0)
ox dx

At

Dividing by Ax At and letting both tend to zero, we obtain the heat equation :

1 5" d2"

i?o-rdi?
(6-43)

We now propose to solve (6.43) given the boundary conditions

M(0, 0 = 0 u(L, 0 = 0 (6.44)

and the initial temperature distribution

u(x, 0) =/(x) (6.45)

The technique is the same as that for the wave equation. We try a solution

of the form u(x, 0 = F(x)G(t). (6.43) becomes

1

k2
G'(t)F(x) = T1F"(x)G(t)

Dividing by F(x)G(t), we again find that there must be a A such that

F"
_

G'
_

X

~F=X G~k2

The first equation, subject to the initial conditions (6.44) again has only the

solutions sin(7inx/Z,), n > 0, corresponding to the choices yJ~X = nni/L. The
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second equation becomes

,
n n

G=-L^G

which has the solutions

T22

G(0 = exp^)t
For convenience, let us write C = n/Lk. We now try to fit the series

00 /nnx\

24,exp(-C2n20sin() (6.46)

to the initial conditions. Evaluating at t = 0 we find that the {An} must be

the Fourier sine coefficients of/(x).

Proposition 4. If the functionfdefined on the interval [0, L] is well-behaved

(say at least twice continuously differentiable), then the heat equation

1 du d2u

k2~dt==~dx2

with the boundary data y(0, 0 = 0 = y(L, t) and the initial condition u(x, 0) =

f(x) has a solution. The solution is given by (6.46) where C = n/Lk and

2 j-Lrr . (nnx\
A =

Zjo/(x)sin^jdx

Now, the wave and heat equations readily and conveniently led us to the

considerations of Fourier analysis. Actually this could have been (and in

fact was) anticipated on physical grounds, for we should expect periodic
behavior in these circumstances. Other partial differential equations arising
out of physics can be solved by similar techniques, but we do not necessarily
end up with a sequence of solutions of the general equation which are made

up of trigonometric functions. Thus the Fourier analysis does not apply,
whereas the fundamental ideas may carry over. The typical situation is

this: a partial differential operator P is given on a certain domain D; we seek

a solution /of

Pif) = 0
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subject to certain boundary conditions "5" and initial data /(x, 0) = g(x).

First, we find all solutions ofP(f) = 0 subject to the boundary conditions B,

without regard to initial conditions. \f {Su ...,Sn, ...} are these solutions,
then we try to find a linear combination 2 a Sn which fits our initial data:

2ZanSn(x,0)=g(x)

In our typical situation the S(x, 0) are orthonormal in the sense of some

convenient inner product on the space of all initial data. In this case the an

are readily computable :

o
= <Sn , g}

The cases of the heat and wave equations described above are just special
cases of this method. There are many more examples of such orthogonal

expansions; discussions of them can be found in most texts of mathematical

physics.

Finally, we cannot really expect to be able to follow through such a

program for every partial differential equation, thus the general theory does

not follow such an explicit line of reasoning. In one approach, local solu

tions are sought through examination of Taylor expansions (everything

involved is assumed analytic). This is the Cauchy-Kowalewski theory. A

more recent attack has its roots in the above ideas, as well as the Picard

theorem. The vector space of differentiable functions is provided with a no

tion of distance and length which is suited to the given problem so that one can

resolve questions of existence and uniqueness (as in the Picard theorem) and

provide usable approximations with estimates derived from the initial data.

This study is one of the most active branches of modern mathematics.

EXERCISES

10. Solve the wave equation

d2y d2x

Jx2~'dt2

on the interval (0, 1) with the boundary data >'(0, 0 =0 =^(1, /), and the

following initial data

(a) Kx,0) = sinx jf
(x, 0) = 0

dy
(b) y(x, 0) = cos3 77X cos nx (x, 0) = sin nx
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(c) Xx,0)=x(x-1) ^(x,0)=0

dy
(d) y(x, 0) = cos 77X (x, 0) = sin 77X

at

*

dy 3tt it

(e) yix, 0) = 0 (x, 0) = sin x + sin -

x

at 2 2

1 1 . Solve the heat equation

du d2u

~dt
=

A~c~x2

on the interval (0, L) with the boundary data

(0, 0 = 0 = u(L, t)

and the following initial data

(a) u(x, 0) = sin x

77X

(b) u(x, 0) = cos

(c) u(x, 0) = x(x - L)

77X 577X

(d) u(x, 0) = sin + 3 sin

12. (a) Show that the function uix, t) =ax + b solves the heat equation

on the interval (0, L), with boundary data

u(0,t) = b,u(L,t)=aL + b

(b) Show that if u, v solve the heat equation with boundary data

u(0,t) = t, u(L,t) = t2 w(0, 0=0 v(L, 0 = 0

then + solves the heat equation with the same boundary data as u.

(c) Solve the heat equation

du d2u

~t ~~dx~2
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on the interval (0, 1) with boundary data (0, 0 = 1, (1, 0 = e' and

initial data u(x, 0) = e".

13. The initial data given in the problem of heat flow may be the rate of

flow of heat energy; or what is the same, the gradient of the temperature.
Show that the solution of the heat equation

1 du
_

d2u

k~2~dt~'dx2

on the interval (0, L) with boundary data u(L, 0) = 0 = u(L, t) and initial

data (dujdx)(x, 0) =/(x) is given by

. 77HX

2 Aexp( C2n2t)cos
n=l J-,

where C is a constant, and

2Z ( 77X

A= /(x)cos dx
nn Jn L

14. Solve the heat equation given in Exercise 11 with this initial data:

(a) dujSx(x, 0) = cos nx/L,

(b) du/dx(x, 0) = sin 77X/Z,.

15. Solve the differential equation

d2u
_

d2u

dX2 ~~d~y~2
+ "

on the interval (0,77) with boundary data u(0, t) =0 = (1, 0 and the

initial data u(x, 0) =/(x).

16. Do the same where the differential equation is

d2u du
_

d2u du

~dx~2~dt'~~dt2l)x

PROBLEMS

15. Show that the series defining the function y(x, t) in Proposition 2

converges uniformly and absolutely under the stated conditions. Does this

observation suffice to deduce the conclusion of Proposition 2 ?

16. We may be given, in the heat problem, the gradient of the tempera

ture as boundary data. Show that the general solution of the heat equation

with boundary data

du 8

-(o,o=o=-a,o
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can be written as a Fourier cosine series. Solve the equation

du d2u

~dt~~dT2

on the interval (0, 77) with the boundary conditions

du du

t- (0,/)=0 = (t,/)
dx dx

and the initial conditions

(a) u(x, 0) = sin x

du

(b) (x, 0) = sin x

dx

17. Solve the differential equation

du t'2u

dt

~

dx2

with the boundary data du/dx(0, t) =0, du/dx(L, t) = h and initial condi

tions u(x, 0) = 0.

18. Solve Laplace's equation

d2u d2u

dx dy2-

on the infinite rectangle 0 <y <L,0 <x (see Figure 6.4) with the boundary

values

u(x, 0) = 0 = w(x, L)

"(0, y) =f(y)

du

7r(0,y)=g(y)
dx

Show that the assumption that u is bounded implies that the third condition

is unnecessary: the solution is uniquely determined by its boundary values.

19. Find the bounded solution of the differential equation Am + u = 0

in the infinite rectangle (Figure 6.5) with the boundary conditions

w(x, 0) = 0 = (x, L)

"(0, y) =f(y)
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Figure 6.5

6.5 The Geometry of Fourier Fxpansions

We now return to the study of functions on the circle; that is, periodic

functions of period 2n. We still have not studied the sense in which the

Fourier series of a function converges to that function ; we have only Corol

laries 1 and 3 ofTheorem 6.1 which deal with pointwise uniform convergence.

Let us consider the real Fourier series of a continuous real-valued function/:

00

A0 + [A cos nx + B sin nx] (6.47)
n=l

If* 1 f"
A0 = fix) dx An = -\ fix) cos nx dx

2n J
-n nJ-n

1 c"
B = -

fix) sin nx dx
n J

-n

Since the Fourier series of a trigonometric function is itself, we find, by

applying these definitions to cos nx, sin nx, that

cos nx sin mx dx = 0 all n, m (6.48)

10
n # m

n n = m # 0 (6.49)

2n n = m = 0

I sin nx sin mx dx = I (6.50)
J
_ [n n = m
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There is a geometric way of interpreting these equations which sheds light

on the subject. We consider C(Y) as a vector space endowed with the inner

product

</> 0> = f fix)gix) dx
J
-IT

This inner product, of course, defines a notion of distance (recall Section

lid

Il/-ffll2 = f l/(x) - gix)\2 dx
J

ir

1/2

(6.51)

which is quite distinct from the uniform, or supremum distance

||/- ^|| =max{|/(x)-<7(x)|: -7r<x<7t}

We shall call the distance (6.51) the mean square distance, and we shall speak

of convergence in this sense as mean square convergence. More precisely,

/ -?/(mean square) if ||/ -f\\2 -> 0 as n -> oo.

Now the importance of the equations above is that they imply that the

functions cos nx, sin nx are mutually orthogonal in the vector space C(Y)
with this inner product. Thus, we can interpret (6.47) as an orthogonal

expansion. Let us make these new definitions:

, ^
1

^ , x
cos nx

n _ _
sin nx

Coto = 7TTT72 Cix) =7 S(X) = j=-
i2n) sjn Jn

Then the collection Cn,Sn is, according to Equations (6.48)-(6.50), an

orthonormal set. If/ is any function on the circle,

A 1_ f
"

ff
,

1
,

_

</, Cq>
Ao ~

(2*)1'2 J- (27T)1'2
dX ~

(2k)1'2

An='ff(x)CSipdx =

<f'C">

JnJ-n Jn yjn

1

Jn
b.-Cmdx = <*$>
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so the Fourier expansion (6.47) can be rewritten as

</, c0>c0 + [</, cnycn + </, s>s]
n=l

and is thus the infinite-dimensional analog of the orthogonal expansion of an

element in an inner product space in terms of an orthonormal basis. This

interpretation has important consequences for us.

Theorem 6.3. Let f be a continuous function on the unit circle, and let

(6.47) be its Fourier series.

(i) Among all trigonometric polynomials of degree at most N, the closest

to f is

N

A0 + iAn cos nx + Bn sin nx) (6.52)
n=l

(ii) (Bessel's inequality)

i- f \f(x)\2 dx >V +
1 (A2 + B2) (6.53)

Zn J
-K z=\

Proof. In order to verify these facts, we use the basic theorem on orthogonal

expansions (Theorem 1.8). The functions C0,Ci, . ..,CN , Si, . .., SN form an

orthonormal basis for the space SN of trigonometric polynomials of degree at most

TV. The orthogonal projection of /into this space is

/o = </, Co>c0 + 2 </. c>c. + </, sys
n= 1

which is the same as (6.52). Thus, according to Theorem 1.8

(0 ll/ll22=!l/ol[22+ll/-/oll22

(ii) foranyweS*, IIZ^/V < 11/- wY22

(ii) directly implies Theorem 6.3(i). According to (i),

il/iu2 > 11/0II22 =/, c2 + 2 i'f c2 + /, sn/)2
n=l

ll/ll22>277^02 + 77 2 A2 + B2
n=l

Since this is true for all N, we can take the limit on the right as N x
, thus obtain

ing Bessel's inequality.
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Now, it is clear that for trigonometric polynomials, Bessel's inequality is

actually equality. For if/ is such a trigonometric polynomial, there is an

N such that/e Sw , so/ = /0 . Thus, by (i) above ||/||2= ||/0||2, and ||/0||2 is

just the right-hand side of Bessel's inequality. Since any function can be

uniformly approximated by trigonometric polynomials (although not

necessarily by its Fourier series), we should expect Bessel's inequality to be

always equality. This is the case.

Corollary. (Parseval's Equality) If f is a continuous function on the unit

circle and has the Fourier series (6.47), then

1 rn

2ji f \f(x)\2 dx = A02+l-f (A2 + B
2

J
-71 Z =1

Proof. We continue the notation of Theorem 6.3. Let e > 0 be given. By

Corollary 4 of Theorem 6.1, there is a trigonometric polynomial w such that

\'w /|| < e. Then

||vf
-

-f',22=j \w~f\2dx<\v-f\'2 j dx<2ne2

Now, since w is a trigonometric polynomial, there is an TV such that weSn. Let

/o be the projection of /into S,v. Then by (i) and (ii),

ll/"22 = "/oV + !!/-/o'!22 < H/ol 22 + |'/- W\\22 < j./oV + 2772

This becomes, as in the above argument,

l/(x)|2 dx < 2nA02 + 77 2 A,2 + B2 + 2t72
'-it n = i

Since the sum to infinity only increases the right-hand side,

1

r- \ l/(x)|2 dx < A02 + - 2 ( A2 + B2) +
Zn J

_ z=i

f'

Now, since e was arbitrary we may let it tend to zero. The resulting inequality,

together with Bessel's inequality, gives Parseval's equality.

Finally, we note that Parseval's equality can be expressed in terms of the



6.5 The Geometry of Fourier Expansions 499

expansion into a series of complex exponentials: f(n)e'"B. Since

n= oo

/(0) = ^0 f(n) = \(An + iB) fi-n) = HAn-iBn)

A02 = |./(0)|2 A2 + B2 = 2(|/()|2 + \fi-n)\2)

so we have

z-f \fid)\2d9= \f(n)\2
Zn J

jr n= oo

Examples

16. Since cos2 6 = \e~i2B + \ + ie'29,

1r27T J-n

1113
COS4 0d0 = 77 + 7 + 77

=

n

16 4 16 8

17. tt2 - 02 = 2Tt2/3 + 2 (-1)V"V
71*0

, 167t5

J
-n

*-^

We conclude that

47T4 j_
.9

+
,ion4

i n4 90

The partial sum to degree 3 of the Fourier series of n2 - 9Z is

2_2 i 2

F3(9) = 2 cos 0 + - cos 28 - - cos 30

The square of the mean square
distance between 92 - n2 and this sum

1 1 10

is

1 71* 1 1

?44 90
1

16 81
~

9 16 81

8 1 _3_
"81

~~

16" 80
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Figure 6.6

In Figure 6.6 the graphs of 7t2 - 92 and F3(9) are drawn.

18. \9\ has the Fourier expansion

n 2 ei(2"+1)9

2~rcA00(2n + l)2

From Parseval's equality, we find

tt2
_ tt^ 4 1 1

_

tc4

3

~

4
+

n2 i0 (2n + l)4
r

^o (2n + l)4
~

96

The third partial sum of the Fourier series of |0| is

r, ,
n 2 / cos 30\

F3(0) = ---(cos(, + )
The mean square distance between |0| and this trigonometric poly-
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nomial is

1 *
,

1 4 1 3

t'2(2n + l)4 96
*

81
"

96 81
^

96

(see Figure 6.7).

Mean square approximation is interesting from the physical point of view.
Consider the solution of the wave equation (suitably normalized)

u(x, 0 = (A cos nt + B sin nt) sin nx

n = 0

The (kinetic) energy of the wave at time t is proportional to

(6.54)

/
du

dt
dx

Now, by Parseval's equality that can easily be computed in terms of the

Fourier sine coefficients of du/dt:

du
= 2 niB cos nt -

A sin nt) sin nx

ejt = o

const

du

dt
dx = (In2(B cos nt -

A sin nt)2)

(Because of our normalizations, the constant is not relevant; it might as wel

Figure 6.7
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be 1 .) Now the maximum value of the right-hand side is

CO

n\A2 + B2)
71=1

(see Problem 20) so this is the maximum kinetic energy of the wave. Now,

according to our geometric considerations above, the Mh partial sum of

(6.54) provides the best approximation to the solution wave in the sense of

energy. Furthermore, the difference in energy levels between the solution

wave and this approximation is readily computable, it is

n2A2 + B2)
n>N

Since energy is the important concept in the study of waves, this mean

square approximation is well suited for this study.

EXERCISES

17. Compute these integrals by Fourier methods:

(a) J cos8 3d dd

71

(b) sin2 fid dd /j, not an integer

(c)

71

L
l-r2

2d<j>
I + r2 - 2r cos(8 -

<j>)

(d)

TC

L
r ,

l-r2 1

LCS<7,l+r2-2rcos(e-oi)J

(e)

Tt

j 82d8

(f) f.'4d6

d<f>

18. Approximate the given function by a trigonometric polynomial to

within 10-3 in mean.

(a) \8\8

cos nd

(b) ^(W^
(c) sin3 8 cos 8

(d) ecos
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PROBLEMS

20. Show that the maximum of (B cos nt A sin nt)2 is B2 + A2

21. Let {/} be a sequence of continuous functions on the circle. Show

that if / ->/ uniformly, then / ->/ in mean. Show by example that the

converse statement is false.

22. Prove: if/, g are integrable real-valued functions on the circle

1

=- f f(8)g(8)d8= 2 fin)g(n)

6.6 Differential Equations on the Circle

We now turn to a slightly different problem involving ordinary differential

equations. We propose to find all periodic solutions of a linear constant

coefficient equation. The particular theory which results is not in itself of

vital importance, but it is worthwhile to study because of the symmetry of the

results and because it presents the simplest example of the general theory of

differential operators on compact manifolds.

As we have already seen, it is valuable in the theory of ordinary differential

equations to allow complex-valued functions. We return then to our

original form of the Fourier expansion of a function/: 2/(")^'"e- Our first

result concerns the computation of the Fourier coefficients of the derivative

of a function.

Proposition 5. Let f be a continuously differentiable function on the circle.

The Fourier series off is obtainable by term by term differentiation. That is,

(6.55)fin) = infn)

f. The proof is by integration by parts.

fin) =^ / f'(8)e>" d8 =^ f(8)e-'

Tt

in

-,

+
Tn

= infin)

Tt

f f(8)e-'
J

>d6

Thus, if the differentiable function / has the Fourier series 2 A e'"9, then

the Fourier series of /' is 2 "A e'"6- I* follows from the fundamental

theorem of calculus that we can also integrate Fourier series term by term,

so long as it has no constant term: if /has the Fourier series 2 AemB, then
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Jo /has the Fourier series 2 iin)~1AeinB. A useful consequence of Prop
osition 5. in conjunction with Bessel's inequality is that a continuously
differentiable function is the sum of its Fourier series.

Proposition 6. If f is a continuously differentiable function, then f(9) =

^L-a)fin)eM holds for all 0.

Proof. By Bessel's inequality

2 |/'()l2<>
n= co

Using the above proposition we then obtain by Schwarz's inequality

2 l/()i = l/(0)i+2
fin)

1/(0)1 + 2
i

fin)

< 1/(0)1 + ( 2 Vf2( 2 \f\n)\2\12 < oo

Thus 2 l/(")l < o, so Corollary 1 of Theorem 6.1 applies.

Now, suppose g is a continuous function on the circle. Given a poly
nomial F(X) = Xk + *=o aiX', we want to find a periodic function f
such that

fm+ zV=ff
i = 0

(6.56)

The fact that we are interested in periodic functions is a new twist and the

local results, such as Picard's theorem, are hardly applicable. For example,
consider the simplest differential equation :

f'=9 (6-57)

By local considerations we know that /must be

fiO)= f m)deb + c

J
-n

However, /will be a periodic function only if f(n) =f( n) = c: for this we

must have J_: g(eb) deb = 0. Thus (6.57) has a solution if and only if $(0)
= 0. We have already recognized this condition in the above discussion of
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integration of Fourier series. For by (6.55), if/' = g we must have inf(n) =

g(n) for all n. This necessary condition shows up again by taking n = 0 : we

must have (0) = 0.

Now we return to the general case (6.56). If we look at the Fourier

series of both sides this becomes F(in)f(n) = g(n). Thus we must have

(n) = 0 whenever F(in) = 0. Otherwise, the equation does not have a

solution. On the other hand, if this condition is satisfied, then the equation

is easily solved since we must have/() = F(i/i)-1^(n). The solution is the

function whose Fourier series is

f iWgfa* (6.58)
n=^oo F(in)

Theorem 6.4. Let F(X) = 2*=o ctXl, and let nu...,na be the roots of

F(iri) = 0. Let LF be the differential operator

Lf(/)=ci/(i)
i = 0

(i) The space of periodic solutions of LF(f) = 0 is spanned by exp(/10),

...,exp(ina6).

(ii) Given any periodic function g, the equation LFf= g has a solution if and

only if(nt) = 0, 1 < i < a. The solution is uniquely determined by specifying

the Fourier coefficients] (n^, 1 < i <o.

Proof. The Fourier coefficients ofLF(f) are {F(in)f(n)). Now if LF(/) = 0, we

must have F(in)f(n) = 0 for all n, so /() = 0 necessarily except when F(in) = 0.

Since nu ..., are the roots of this equation, (i) is proven.

If g is a periodic function and LT(f) =g, we must have F(in)f(ri)
= g(n). Thus

g(ni) =o, 1 < / < ct is a necessary condition for this equation. Suppose now that

this condition is satisfied. Then if /is a solution we must have

/()=|^r #!,...,. (6-59)

and the f(nt), 1 < i < a can be freely chosen. Upon specification of these coeffi

cients the Fourier series of /is uniquely determined. The only question is this:

are the numbers (6.59) the Fourier coefficients of a function? The answer is yes

when F is of degree at least one. For then \F(iri)\ >C\n\ for some constant C

and all sufficiently large n (Problem 24), and thus

gin)

F(in)
<lc

gin)

n

< c(2^Y2(2l^m1/2< (6-60)
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for the tail end of the series, and thus the sum of the whole series is finite. Hence

the Fourier series

/(*)= I J^'"" (6-61)
=_ F(m)

converges uniformly to a continuous function. The theorem is thus proven.

We can get a much better looking form for the solution, if the degree of F

is large enough (at least second degree). For then

P(W= TT", (6-62)
=-, F(in)

defines a continuous function (Problem 24) and the solution (6.61) is given by

oo ei"9 1 n

=_, F(in)2nJ-n

1 ti oo e'n(8-<t>)
= T-f 9i4>) -TT-T-^
2nJ-n n= -oo F(in)

=^f 9i<b)FiO - eb) deb

using (6.61). We can now write the conclusions of Theorem 6.4 explicitly

in terms of an integral formula.

Theorem 6.5. Let F(X) = jL0 ctXl (k > 2), and let nu...,na be the

solutions of F(in) = 0. Let LF be the differential operator defined by the poly

nomial F. Let

m =

emB

=-oo F(in)
77^771, ", tin

Then the equation LT(f) = g has a solution if and only if g(n ,) = 0,1 <i<o.

All solutions are of the form

fiO) = ^ f 9i4>)H0 -eb)deb+i Cj exp(inJ- 0) (6.63)
znJ-n j=\
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Thus a constant coefficient differential operator on the circle has an inverse

of the form (6.63) (defined on its range), called an integral operator.

Examples

19. Find a periodic solution of /" /= cos 29. Now

gi9) = cos 29 = i-ie120 + e-'2B).

The characteristic polynomial is FiX) = X2 1 and Fiin) = n2 1

has no roots. Thus there exists a unique solution and it is given by

(6.58):

f"8 1 /"29 -i26\-

g(n)e""> 1 (e'2B e~'2B\

= - cos 29

20. Solve: /" - 3/' + 2f=n2 -92. The characteristic polynomial

is F(X) = (X2 -3X+2) = (X- l)(X
-

2) so that again F(in) = 0

has no integral roots. Since n2 - 92 has (by Example 4) the Fourier

series

2tt2 einB

^- + 2S(-D-^rj ti#o n

the solution is (by 6.58)

/(0) = ^-22(-D"
einB

n2in2 + 3m - 2)

21. f(k) = g. This has a solution if 0(0) = 0. In this case the

solution is given by

einB

fie)=C+2Zgin)k
n#o (in)

22. Find all solutions of /" +4/= 0. Here, the roots of X2 + 4

= 0 are 2i, therefore, all solutions are periodic of period 27t: e2'9,

e~2'9 span the space of solutions. Notice, however, that there are no

solutions off" + 5/= 0 which are periodic.
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EXERCISES

19. Find all periodic solutions of these differential equations:

(a) y" + 2iy'+l5y=0

(b) /5)
- v(4) + 10/

3)
-

10/' + 9/ -

9y = 0

(c) /4) + 2/' + l=0

20. Find periodic solutions of these differential equations :

(a) v<4> + 2y" + v = sin 58 + cos 50

(b) y" + 6y' + 9y = n<-82

(c) v<5) + v = expfcos 8)

PROBLEMS

23. Suppose F is a polynomial of degree at least k. Show that there is a

C> 0, and an integer TV" such that \F(iri)\ >C\n\k for n > N.

24. Show that if F is a polynomial of degree at least 2, then

Fie)-.
n= -oo .FO'H)

t not a root

is a continuous function on the circle.

25. If/ ^ are two continuous functions on the circle, define/*^, the

convolution of /and g, by

1

(f*g)iO)=^\ f(<j>)g(6-<j>)d<j>

(a) Show that/* g =g */.

(b) Show that the Fourier coefficients off*g are f(n)g(n).
(c) Show that the differential equation Lr(f) g, where LF is the

constant coefficient operator associated to the polynomial F is solved by

f= g* F, where F has the Fourier coefficients F'iri)'1.

26. Let

P1(r,t) = \ P(r,r)dr

(a) Show that lim Pi(r, t) is 0 if t < 0, and 1 if / > 0.

r-l

(b) Show that for any C1 function g on the circle

*(0) = lim f g'(4,)Pi(r,8-^)d<t,
r-*l

J
_

00

(////: lim Pi(r, 0) "has the Fourier series" 2 e'^/in.)
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6.7 Taylor Series and Fourier Series

If we now take the attitude that the unit circle is the boundary of the unit

disk we discover connections between Fourier series and Taylor series which

are of enormous significance in complex function theory. These con

nections cannot be fully exploited until we learn the fact (in the next chapter)

that complex differentiable functions can be expanded in a power series. In

this section we shall explore the relationship between the Fourier and Taylor

expansions of such a function defined on the unit disk, assuming its Taylor

series converges on the disk.

Let/(z) ==0 anz" on tne unit disk. In polar coordinates this becomes

CO

f(rew) = Y,anrHeine (6.64)
77
= 0

which is, for each r, a Fourier series. Using the Fourier theoretic material

at hand we get a most remarkable collection of integral formulas for func

tions which are sums of convergent power series.

00

Theorem 6.6. Letf(z) = * anz" be a convergent power series in {\z\ <, 1}.
71= 0

Then we have these equations.

(i) For each r < 1,

C f(rete)e-inB d9 = an
= ^/(n)(0) n > 0

2nJ-n n\

f fireie)einB d9 = 0 n > 0

2nJ-n

(ii) M = kfj{ei*\ + r2Xrcos(9-eb)d+

for z = reie, r < 1.

Proof. By Equation (6.64), for fixed r, ar" is the nth Fourier coefficient of

f(rew) for n > 0, and for negative n the Fourier coefficient vanishes. This is just
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what part (i) says explicitly. Equation (6.64) also says that f(re'e) is the Poisson

integral of f(ei0) and thus we obtain (ii). Then (iii) follows from resumming the

series, using the fact that the negative coefficients vanish. Explicitly, we have

f(z)= | az= 2 f f f(<t>)e-1"* d<j>
71 = 0 71 = 0 Z77 J

_

If" / z\"

1 r" e'*
=

2n\j^7^zd*

the last change being accomplished by summing the geometric series.

There are several more or less immediate conclusions one can draw from

the above theorem. First of all, the sum of a convergent power series on the

unit disk is completely determined by its boundary values, by Equation (iii),
known as Cauchy' s formula. This of course follows from the maximum

principle verified in the last chapter for analytic functions. The Cauchy
formula itself implies the maximum principle (see Problem 27). A more

important implication is that the sum of a convergent power series in the disk

is analytic; that is, it can be expanded in a power series centered at any

point.

Corollary. Let f(z) = 2tT=o anz" m the disk {\z\ < 1}. Then for any z0,

\zo\ < 1,/cfln be expanded in a power series centered at z0

Proof. By Cauchy's formula

1 r* e"

Now

1 1
_

1 / Z-Zp

e'* z e"> -z0-(z- z0) e'* -

z0 \ e'* -

z0

In the disk [ze C: \z z0\ < 1 \z0\, the last factor is the sum of a geometric

series :

\ e'* - zoj fo \e'*
- zo)

T
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which we may substitute in the integral. We obtain

/(Z) =1[^/1/(^(^^^](Z-Z0)"
the series being convergent for all z such that \z z0 \ < 1 |z0 1 . As a consequence

we have still more integral formulas :

f^-fjji^j^-^^
for any z0, \z0\ < 1.

We shall see in the next chapter that these integral formulas can be ex

plained in yet another way (basically the fundamental theorem of calculus)

and are just very special cases of general formulas. We conclude now with

an approximation theorem which should be contrasted with the Weierstrass

approximation theorem (Problem 7) for a real variable.

Theorem 6.7. Let f be a continuous function on the circle, f is approxi-

mable by polynomials in z if and only if

C fid)eM d9 = 0 n > 0 (6.65)
27E J-n

Proof. If / is approximable by polynomials, there is a sequence {/} of poly

nomials such that ft -s> f uniformly. Since (6.65) is readily verified for any poly

nomial, it thus holds also for / by continuity of the integral.

Conversely, if (6.65) is verified, then the Poisson transform of /is the sum of a

convergent power series :

P/(z)= 2z" I*I<1 (6-66)
71 = 0

Since Pf(re")^-f(9) as r-*l, then given e>0, there is an r<\ such that

\Pf(re,e) -f(8)\ < e for all 8.

Now on the circle \z\ = r, the series (6.66) converges uniformly, so there is an TV"

such that

Pfiz)- 2 az" <e \z\=r
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Then, on the unit circle,

f(z)- 2 ar"z'

independently of 8.

EXERCISES

21. Integrate:

f(e">)- 2 a-r-e'"1
71 = 0

<\f(e">)-Pf(rel)\ + Pfire") - 2 aire")"
71=0

<2e

(a) /
*

^3ie j_ Aiie , ieAe2te + e"
dd

(b) L&

2e<" - 1

-dd k, n positive integers
1/4)"

PROBLEMS

27. Deduce the maximum principle for convergent power series on the

disk from Cauchy's formula.

28. Using the results of Problem 11, verify that these assertions for a

function defined on the disk are equivalent :

(a) f(z) =2az"
71=1

(b) f is complex differentiable.

(c) /is uniformly approximable by polynomials.

(d) /is harmonic and /( n) = 0 for n > 0.

6.8 Summary

The function f(t) = exp(2nit/L) wraps the real line around the circle so

that every interval of length L covers the circle once. The collection of

periodic functions of period L may be viewed as the collection of functions

on the circle.

If/ is a piecewise continuous function on the circle, its nth Fourier co

efficient is

f(n) = ^fj(eb)ei"Ueb
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The Fourier series off is the series

fin)eiB
n
= oo

The Poisson transform off is the function on the unit disk given by

Pfir, 0) = f f fi <
M

2

1 ~ T

(n m
d(b = fin)r(n)eM

2nJ-n 1 + r 2r cos({? <p) =-

Theorem. J// is a continuous function of the circle andg is the function on

the disk defined by

gir, 9) = Pfir, 9) r < 1

g(\,9)=fi9)

then g is continuous on the disk and harmonic isatisfies Laplace's equation)

inside :

s2g d2g n

-| + -4 = 0 for r < 1
dx2 dy2

Theorem. Iff is continuously differentiable on the circle, then it is the sum

of its Fourier series:

fiO)= Rn)eine
77= 00

Suppose u is harmonic in a closed and bounded domain D in the plane.

Then

(i) if A(a, R)^D

1 r"

u(a) = u(a + RelB) d9 (mean value property)
2n J

-Tt

(ii) if u < M on dD, u < M inside D (maximum principle)

A function harmonic on a closed and bounded domain is uniquely deter

mined by its boundary values.

If the real-valued function/has the Fourier series Ce'"e, we can rewrite
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it as

00

A0 + A cos n9 + B sin n9
71=1

where

Ao = Co = ^\[feb)dtb

An = 2Re C = C + C_ = - f
*

f(eb) cos n0 rf<

B = 2 Im C = -

j(C,,
-

C_) = - f /((/>) sin neb deb
n J-*

If /is a C1 periodic function of period L, it can be expanded in a Fourier

cosine series

S, nnx

fix) = A0+ 2ZAn COS -

n=l L

Ao=j I fix) dx A = - f /(x) cos - dx
L, Jq L, Jo L

or a Fourier sine series

.S, 7tnx

/(x)= 2^nsin
-

7t = l L,

2 rL , s .
nnx

B" = limSm-L-

the wave equation. Given the C2 periodic functions / g of period L

the equation

dx2
~

c2 a/2

with the boundary data

y(0, 0 = 0 y(L, t) = 0
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and the initial data

yix, 0)= fix) ^(x,0) = 5(x)

has a solution. The solution is given by

yix, 0 =
nnt nnt

An cos
- I- B sin

Lc Lc

nnx

sin
-

where

^ =

ZJo/(x)sin()rfx B.-7Joff(x)sm() dx

the heat equation. Given the C2 periodic function / of period L the

equation

1 du 82u

l?dt~dP

with the boundary data

m(0, 0 = 0 = u(L, t)

and the initial condition

u(x,0)=/(x)

has a solution given by

oo TJftX

u(x,t)= Aexp(-CVOsin
-

71=1
U

where C = 7T/Z.A: and

2 rL nnx
,

An =
LJ fWsin~rdx

Consider C(Y) as endowed with the inner product

</, g> = f" /<?(*) dxJ
it
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Let

1
_

cos nx
, ,

sin nx

{2njT2 c=^-
CoW =

T^m Cn(x) = 7=- S(x) =

{Cn , S'n) is an orthonormal set. The Fourier series of a function / can be

rewritten as

</, cyc + </, s>s
71 = 0 17=1

parseval's equality

1 f" |/(x)|2 dx =V + 1 G42 + B2)
ZnJ-n Z=l

differential equations on the circle. Let F be a polynomial and let

nx, . . .
, na be the integer solutions of F(in) = 0. Let LF be the differential

operator defined by the polynomial F. Let

He) =
eM

=_oo F(in)
71^711 Tio-

Then the equation LF(f) = g has a solution if and only ifg(nt) = 0, 1 < i < a.

All solutions are of the form

fie) = f f 0-)^(0 -eb)deb+t cj cxp(inj9)

OO

Theorem. Le? /(z) =2 anz" be a convergent power series on the unit

71 = 0

disk. Then these equations are valid:

(i) ^- f fireiB)e~inB d9 = an
= -.f\0) n > 0, r < 1

2n J
-n n!

(ii) f* firew)einB d9 = 0, n > 0 r < 1
271 J-

1 /* .. ,,..
1 - r2

1 .* g'*
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If /is complex differentiable in a domain D, it can be expanded in a

power series in some disk centered at any point in D.

FURTHER READING

The theory of Fourier series is exposed in these texts :

R. Seeley, An Introduction to Fourier Series andTransforms,W. A. Benjamin,

Inc., New York, 1966.

Kreider, Kuller, Ostberg, Perkins, An Introduction to Linear Analysis,

Addison-Wesley, Reading, Mass., 1966.

Hardy and Rogosinski, Fourier Series, Oxford University Press, New

York, 1956.

Further applications to physics and the development of other partial

differential equations can be pursued in

E. Butkov, Mathematical Physics, Addison-Wesley, Reading, Mass., 1968.

O. D. Kellogg, Foundations ofPotential Theory, Dover, New York, 1953.

MISCELLANEOUS PROBLEMS

29. Let

Show that 2 /() = 1/2 (see Example 7). What is

2 (-!)"/()?
n= go

30. Let / be a piecewise continuous function on the circle. Suppose /

has a jump discontinuity at 0; that is, the limits

lim f(x) = a lim f(x) = b

*->0 *-0

x<0 *>0

both exist, but are different. Show that

1

limPf(r,0) = -(a + b)
7-.1

^

(Hint: Follow the proof of Theorem 6.1 for 0>O, 0<O independently,

using the substitution

i
" i*

i. = (" P(r, _# d<b = | P(r, -$) d<j>)
2 Jn J-n
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31. Show that /is an infinitely differentiable function on the circle if

and only if this condition on the Fourier coefficients is satisfied: for every

k > 0 there is an M > 0 such that

M

\fin)\<k for all n

32. Suppose

P(z)
f(z) =

-^-J-
JK '

Qiz)

where P is analytic on {|z| < 1} and Q is a polynomial. Show that there is

an integer TV and complex numbers a0 ,
. . .

, aN such that

aNf(k-N)+--- + a0 f(k) = 0 for all k < 0

(Hint: Let Qiz) = aN z* + + a0.) State and prove the converse asser

tion.

33. Suppose that /is complex differentiable in the annulus [r < \z\ < R}.

Using the polar form of the Cauchy-Riemann equations, show that

f(z)= 2 a.z"
n =

- x

where the a can be computed from the Fourier coefficients fin) of f(pew)
for any p between r and R.

34. Show that if / is analytic in the punctured disk {0 < |z| <R) and

bounded, then /extends analytically to the entire disk.

35. Show that if u is harmonic in the disk {\z a\ <R], then for every

r<R,

1 /" R2~r*

uia + re'*) = T1?\ uia + Re'*) 2 -^- d<f>
2nRJ_K R2 + r2 2Rr cosi8 <f>)

36. (Harnack's principle) If u is harmonic and nonnegative in the disk

{|z-a| <R}, then

R-r R+r
<uia + re<)<-

R + r R r

37. Suppose {} is a sequence of nonnegative harmonic functions on the

disk {|z a\ < R}. Suppose also that 2 uia) < oo. Then

u(z) = 2 u(z)

converges for all z in that disk, and u is harmonic.
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38. Show that

f (-1)" _7r
.fi 2n + 1 4

39. Verify the trigonometric identity

1 sin(2TV+l)0
- + > cos 2/70 =

. .
-

2 +i 2 sin 0

(Hint: The sum to be evaluated is

\ + 2Re 2 (e2'8)")
Z 71 = 1

40. Using the identity of Problem 39, obtain Dirichlet's integral for the

partial sums of the Fourier series off:

SN(9) = AQ + 2 iA cos "0 + # sin "e>
n= 1

1 r" sin(TV +)</>

2tt J_ sin (/>

2t7 Jn sin **

41 . Using the Dirichlet integral (Problem 40), verify that for / a con

tinuous function on the circle which is differentiable at the point 0O ,
then

oo

/(0O) = A0 + 2 iA" cos "e<> + B" sin n6)
71=1

(Hint:

SN(80) - f(80) =^ J sin^TV+
-

j ^
1\ , M> + 0 -/(<.) ,,

if" r
= sin TV^ cos ;

sin i^

<j>f(8o + 4>)-f(8o)

2 sin </>

The expressions in brackets are continuous functions.)

+ cos Nftf(80 + +)-/ (80)] d<[>
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42. Solve the differential equation

v(0)=0 y(L)=0

by Fourier methods, where (a) g is constant, (b) g(x) = L x.

43. Suppose we want to study the problem of heat transfer through a

homogeneous rod with insulated ends : heat does not flow through the ends.

If the rod is assumed to lie on the interval 0 <L x < L this amounts to the

boundary conditions

du du

-(0,t)=0= (L,t)
dx dx

The initial condition may be given either as the temperature distribution

(u(x, 0)) or the initial heat flow [(du/dt)(x, 0)]. Show that with these

boundary conditions and either kind of initial condition the heat equation

(6.43) can be uniquely solved.

44. Solve the insulated end heat problem with (a) constant initial tem

perature, (b) initial temperature = cos(x/L), (c) initial heat flow = x(x L).

45. Suppose that u is a real-valued function harmonic in the unit disk.

Show that u is the real part of an analytic function. (Hint: Write u(z) =

a0 + 2=i (a-z~" + anz"), and add a pure imaginary-valued harmonic

function with the same negative Fourier coefficients.)
46. If u is harmonic and real-valued on the unit disk, there is a unique

harmonic real-valued function v such that v(0) =0, u + iv is analytic.

Using the relation between the Fourier expansions of v and u (Problem 45)

find an integral form for v in terms of the boundary values of u.

47. If u and v are as in Problem 45, show that the families of curves

{u = constant}, {v = constant} are orthogonal.

48. (The convolution transform) Let # be a continuous function on the

circle and define the transformation G : C(T) -* C(T) by

i
n

G(f)(8) = j f(<p)g(8
-

<)>) deb

Show that (a) the eigenvalues of G are the Fourier coefficients g(n) of g.

(b) The nonzero eigenvalues ofg form a sequence converging to zero.

(c) The eigenspaces associated to the nonzero eigenvalues are finite

dimensional.

(d) The Fourier series of G(f) is

2d(n)f(n)e"
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(e) G(u) =/has a solution if and only iff is orthogonal to the kernel

of G.

49. Under what conditions is the convolution transform (Problem 48)

symmetric; skew-symmetric; one-to-one?

The Laplace Transform

50. The Laplace transform is useful in the study of differential equations

defined on the positive real axis, R+. If /is a bounded function on R+,

define

L(f)(s) = j e-fit)dt

Show that L(f) is defined for all s > 0.

51. A function /defined on R* is ofexponential order s0 if exp( s0t)f(t)

is a bounded function. Show that for such a function, L(f) is defined for

s>s0.

52. Compute these Laplace transforms :

(a) L(1)(j)=7

n\

(b) L(t") =

(c) L(e<)
(s-D

(d) L(e-')=?

53. Verify these properties of the Laplace transform:

(a) L is linear.

/un v/vi //(*-) x>a,fora>0
(b) if/a(x) = [ Q x<0

L(fa) = e-asL(/)

(c) L(/')=^(/)-/(0)

54. Notice that by the above problems we see that the Laplace transform

of a polynomial is a polynomial in I Is. More generally, we might expect

at least that if /is of exponential type, L(f)(s) -+0 as s - oo. Is this true?

55. Because of property (c) in Problem 53, Laplace transformation trans

forms a differential equation into an algebraic problem. For example,

suppose we want to solve y" + y
= 1

, >-(0) = 0, y'(0) =0 on R+ . If / is a
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solution we must have

Uf) = sLif)-fi<0)

Lif) =sLif)
-

/'(0) = s2Lif)
- 5/(0) -/'(0)

Thus, using the differential equation and the initial conditions

L(f"+f)=LH)

s2Lif) + Lif)=-
s

L(/) ~

sis2 + 1)

~

s

~

2 \s + i)~ 2 \s - ij

Reading Problem 52(a)-(d) backward, we obtain the solution

f(t) = 1 - i(e" + e~") = l- cos t

Solve these equations by Laplace transformation :

(a) y+v = l K0)=0 /(0) = 1

(b) y"-y = e' y(0) = l y'(0)=0

(c) y'-2y=e- y(0) = I

(d) y' + 3y' + 2y=e~' + t v(0) = 1 y'(0) =0

56. Solve these systems by Laplace transformation:

(a) yi+y2=e-2' yi(0) =0=y2(0)

y'i + 2^i = 1 .

(b) yl-y'1=yl >'i(0)=0 /,(0) = 1

y"i + yi = 2y2 y2(0) = 1 yiiO) = 0.

57. Define this convolution for continuous functions on R+

if* 0X0= f fir)git-r)dr
>o

Show that Lif*g)=Lif)Lig).

58. Solve the differential equation

v" + 2/ + j;
= /(O X0) = 0 /(0) = 1

where /is of exponential type (recall Problem 51).

59. Show that the function of a complex variable

Lif)iz) = f */(0 dt
Jo
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is complex differentiable (if / is continuous and bounded) in the domain

{zeC: Rez>0}.

The Fourier Transform

60. We now consider the collection of continuous functions defined on

all of R. We shall discuss the Fourier transform, which is the analog of

Fourier series:

/"periodic /defined on R

fin) = ir- \ f(8)e~
'">

dd /( = | f fix)e~
'*

d$
2nJ- i2n)"2J-<a

Fourier series of/= f fin)e""> F(/)(x) =
- f /(&>'<* d

71= -a (277)"2 J_

Of course, since we are working on an infinite interval, we want to be assured

that the Fourier transform is defined. The most appropriate class of

functions will come out of these observations :

(i) If/ is integrable on R, /is a bounded continuous function.

(ii) The Fourier transform/^ /is linear.

(iii) if'Y = ii&f

(iv) /' = iixfY

Since Fourier transformation interchanges the operations of differentiation

and multiplication, we select the class of functions such that the effect of all

such operations produces an integrable function. This is the Schwartz

class SiR) of test functions : / is a Schwartz function, fe SiR), if and only if

/"is C"\ and for all positive integers n and k the function

dk

T" {x"f)
dx

is integrable on R. Show that fe SiR) implies fe SiR)._ (Hint:
"

(x"/)(t)

integrable" implies "(i$)'"fM bounded" implies "f-2/<"> integrable.")

61. For/ g e S(R) define the convolution by

if*gix)= f fiy)g(x-y)dy

Show that if*g)A =fg.
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62. Borrowing again from the theory of Fourier series, we should expect

that/(x)=F(/)(x):

^)=^!^* (6-67)

If we try to verify this directly we enter difficulties similar to that in Theorem

6.1 : the integral on the right is

(2^f-J-/^(X-dt^
and we cannot apply Fubini's theorem since J e'*-" d does not exist.

The difficulty is overcome by introducing the convergence factor e~rM, then

letting y->0. More precisely, define the Poisson transform off, a function

defined on the upper half plane by

Pfix + iy) = p^lTi j Jifcxplfa
-

y If |] #

Prove these assertions :

(i) if/ is integrable on R,

Pfix + iy) =
- f /(/) . 7j

- dt
nJ-m (x~t)2+y2

and

limP/(x + /=/(x)
y-0

f
co

(Hint: Integrate J ^exp[('f(jc
-

t) y |f |] dt; over R+, R~, independently.

The second statement follows as does the result of Theorem 6. 1 , since this

Poisson kernel y[(x t)2 + y2]'1 has the same behavior as that for the disk.)

(ii) Pf is harmonic in the upper half plane and thus solves Dirichlet's

problem there with the boundary values /.

(iii) if fe SiR),

lim Pf(x + iy)=F(f)(x)
V-.0

so the inversion formula (6.67) holds on S(R).
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